アラカワ カオル
Arakawa Kaoru
荒川 薫 所属 明治大学 総合数理学部 職種 専任教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2018/11 |
形態種別 | 国際会議議事録 |
査読 | 査読あり |
標題 | Kernel Correlation Filter Tracker via Adaptive Model |
執筆形態 | 共著(筆頭者以外) |
掲載誌名 | Proc. ISPACS 2018 |
掲載区分 | 国外 |
出版社・発行元 | IEEE |
巻・号・頁 | pp.205-209 |
総ページ数 | 5 |
著者・共著者 | Tang Zhaoqian, Kaoru Arakawa |
概要 | In this paper, we propose a robust object tracking algorithm using an adaptive model and robust state recognition in kernel
correlation filter tracker. In the first stage of the proposed algorithm, we apply a scale pool technique to deal with scale variation in object tracking. Then, the detection response from kernel correlation filter tracker is combined with grayscale histogram similarity to estimate the state of the object. Furthermore, the classifier model is updated with adjustable learning rate, thereby enabling the tracker to be robust to the change of the state of the object. Experimental results demonstrate that the proposed tracker realizes outstanding performance on a challenging benchmark (OTB). |
ISBN | 978-1-5386-5770-6 |