|
オガワ トシユキ
OGAWA Toshiyuki
小川 知之 所属 明治大学 総合数理学部 職種 専任教授 |
|
| 言語種別 | 日本語 |
| 発行・発表の年月 | 1990/06 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 標題 | Travelling wave solutions to a generalized system of nerve equations |
| 執筆形態 | 単著 |
| 掲載誌名 | Japan Journal of Applied Mathematics |
| 掲載区分 | 国内 |
| 巻・号・頁 | 7,255-276頁 |
| 著者・共著者 | Toshiyuki Ogawa |
| 概要 | We show the existence of travelling wave solutions to a generalized system of nerve equations which include the case where the slow variable also has a diffusion effect. We are mainly interested in the persistency of the pulse solution of the Fitz Hugh-Nagumo equations. Using an isolating block and a contracting block family, an intuitive idea derived from the shooting method becomes mathematically rigorous. ? 1990 JJAM Publishing Committee. |
| DOI | 10.1007/BF03167844 |
| ISSN | 09102043 |
| PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77951511385&origin=inward |