|
マツオカ ナオユキ
MATSUOKA Naoyuki
松岡 直之 所属 明治大学 理工学部 職種 専任教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2018/03 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 標題 | Almost Gorenstein Rees algebras of p<inf>g</inf>-ideals, good ideals, and powers of the maximal ideals |
| 執筆形態 | 共著(その他) |
| 掲載誌名 | Michigan Mathematical Journal |
| 掲載区分 | 国外 |
| 巻・号・頁 | 67,pp.159-174 |
| 著者・共著者 | Shiro Goto, Naoyuki Matsuoka, Naoki Taniguchi, Ken Ichi Yoshida |
| 概要 | © 2018 University of Michigan. All rights reserved. Let (A,m) be a Cohen-Macaulay local ring, and let I be an ideal of A. We prove that the Rees algebra R(I) is an almost Gorenstein ring in the following cases: (1) (A, m) is a two-dimensional excellent Gorenstein normal domain over an algebraically closed field K ≅ A/m, and I is a pg-ideal; (2) (A, m) is a two-dimensional almost Gorenstein local ring having minimal multiplicity, and I =mlfor all l ≥ 1; (3) (A,m) is a regular local ring of dimension d ≥ 2, and I = md-1. Conversely, if R(ml) is an almost Gorenstein graded ring for some l ≥ 2 and d ≥ 3, then l = d - 1. |
| ISSN | 00262285 |
| PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85043514890&origin=inward |