オガワ トシユキ
OGAWA Toshiyuki
小川 知之 所属 明治大学 総合数理学部 職種 専任教授 |
|
言語種別 | 日本語 |
発行・発表の年月 | 2015/04 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Instability of periodic traveling wave solutions in a modified FitzHugh-Nagumo model for excitable media |
執筆形態 | 共著(筆頭者以外) |
掲載誌名 | Applied Mathematics and Computation |
掲載区分 | 国外 |
巻・号・頁 | 256,968-984頁 |
著者・共著者 | M. Osman Gani, M. Osman Gani, Toshiyuki Ogawa |
概要 | We introduce a two-variable system of reaction-diffusion equations for excitable media. We numerically investigate the existence and stability of periodic traveling wave solutions in a two-dimensional parameter plane. Our results based on the method of continuation show a stability change of Eckhaus type. There are two families of periodic traveling waves: fast and slow. The fast family is stable in the case of standard FitzHugh-Nagumo excitable system. However, we observe that the fast family becomes unstable in our model. Consequently, it bifurcates to an oscillating wave. We explain this phenomenon by numerically calculating the essential spectra of the periodic traveling wave solutions. Moreover, we study the stability of the periodic traveling wave solutions for the Aliev-Panfilov excitable system and compare its results with the proposed model. |
DOI | 10.1016/j.amc.2015.01.109 |
ISSN | 00963003 |
PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923319957&origin=inward |