オガワ トシユキ
OGAWA Toshiyuki
小川 知之 所属 明治大学 総合数理学部 職種 専任教授 |
|
言語種別 | 日本語 |
発行・発表の年月 | 2016/01 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Chaotic dynamics in an integro-differential reaction-diffusion system in the presence of 0:1:2 resonance |
執筆形態 | 共著(筆頭者以外) |
掲載誌名 | Springer Proceedings in Mathematics and Statistics |
掲載区分 | 国外 |
巻・号・頁 | 183,531-562頁 |
著者・共著者 | Toshiyuki Ogawa, Takashi Okuda Sakamoto |
概要 | ? Springer Japan 2016. The dynamics and bifurcation structure of the normal form in the presence of 0:1:2 resonance are studied. It is proved that connecting orbits (heteroclinic cycles or homoclinic orbits) exist on the center manifold of the normal form. Moreover, to study the dynamics around the triple degeneracy of the normal form, we apply the results in Dumortier and Kokubu [4]. The sufficient conditions for the existence of heteroclinic cycles in a scaling family (blow-up vector field) of the 0:1:2 normal form are obtained. These results give a reasonable explanation for the behaviors of the solutions to an integro-reaction-diffusion system. |
DOI | 10.1007/978-4-431-56457-7_19 |
ISSN | 21941009 |
PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009773563&origin=inward |