オガワ トシユキ   OGAWA Toshiyuki
  小川 知之
   所属   明治大学  総合数理学部
   職種   専任教授
言語種別 日本語
発行・発表の年月 2016/01
形態種別 学術雑誌
査読 査読あり
標題 Chaotic dynamics in an integro-differential reaction-diffusion system in the presence of 0:1:2 resonance
執筆形態 共著(筆頭者以外)
掲載誌名 Springer Proceedings in Mathematics and Statistics
掲載区分国外
巻・号・頁 183,531-562頁
著者・共著者 Toshiyuki Ogawa, Takashi Okuda Sakamoto
概要 ? Springer Japan 2016. The dynamics and bifurcation structure of the normal form in the presence of 0:1:2 resonance are studied. It is proved that connecting orbits (heteroclinic cycles or homoclinic orbits) exist on the center manifold of the normal form. Moreover, to study the dynamics around the triple degeneracy of the normal form, we apply the results in Dumortier and Kokubu [4]. The sufficient conditions for the existence of heteroclinic cycles in a scaling family (blow-up vector field) of the 0:1:2 normal form are obtained. These results give a reasonable explanation for the behaviors of the solutions to an integro-reaction-diffusion system.
DOI 10.1007/978-4-431-56457-7_19
ISSN 21941009
PermalinkURL https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009773563&origin=inward