マツオカ ナオユキ
MATSUOKA Naoyuki
松岡 直之 所属 明治大学 理工学部 職種 専任教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2016/06 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Uniformly Cohen-Macaulay simplicial complexes and almost Gorenstein* simplicial complexes |
執筆形態 | 共著(その他) |
掲載誌名 | Journal of Algebra |
掲載区分 | 国外 |
巻・号・頁 | 455,pp.14-31 |
著者・共著者 | Naoyuki Matsuoka, Satoshi Murai |
概要 | In this paper, we study simplicial complexes whose Stanley-Reisner rings are almost Gorenstein and have a-invariant zero. We call such a simplicial complex an almostGorenstein* simplicial complex. To study the almost Gorenstein* property, we introduce a new class of simplicial complexes which we call uniformly Cohen-Macaulay simplicial complexes. A d-dimensional simplicial complex δ is said to be uniformly Cohen-Macaulay if it is Cohen-Macaulay and, for any facet F of δ, the simplicial complex δ\ (F) is Cohen-Macaulay of dimension d. We investigate fundamental algebraic, combinatorial and topological properties of these simplicial complexes, and show that almost Gorenstein* simplicial complexes must be uniformly Cohen-Macaulay. By using this fact, we show that every almost Gorenstein* simplicial complex can be decomposed into those of having one dimensional top homology. Also, we give a combinatorial criterion of the almost Gorenstein* property for simplicial complexes of dimension ≤2. |
DOI | 10.1016/j.jalgebra.2016.02.005 |
ISSN | 00218693 |
PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84963836263&origin=inward |