|
マツオカ ナオユキ
MATSUOKA Naoyuki
松岡 直之 所属 明治大学 理工学部 職種 専任教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2009/11 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 標題 | On finite generation of symbolic Rees rings of space monomial curves and existence of negative curves |
| 執筆形態 | 共著(その他) |
| 掲載誌名 | Journal of Algebra |
| 掲載区分 | 国外 |
| 巻・号・頁 | 322,pp.3268-3290 |
| 著者・共著者 | Kazuhiko Kurano, Naoyuki Matsuoka |
| 概要 | In this paper, we shall study finite generation of symbolic Rees rings of the defining ideal of the space monomial curves (ta, tb, tc) for pairwise coprime integers a, b, c such that (a, b, c) ≠ (1, 1, 1). If such a ring is not finitely generated over a base field, then it is a counterexample to the Hilbert's fourteenth problem. Finite generation of such rings is deeply related to existence of negative curves on certain normal projective surfaces. We study a sufficient condition (Definition 3.6) for existence of a negative curve. Using it, we prove that, in the case of (a + b + c)2>a b c, a negative curve exists. Using a computer, we shall show that there exist examples in which this sufficient condition is not satisfied. © 2008 Elsevier Inc. All rights reserved. |
| DOI | 10.1016/j.jalgebra.2008.08.015 |
| ISSN | 00218693 |
| PermalinkURL | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70349378734&origin=inward |