イチノセ マサシ   ICHINOSE Masashi
  一之瀬 真志
   所属   明治大学  経営学部
   職種   専任教授
言語種別 英語
発行・発表の年月 2023/10
形態種別 学術雑誌
査読 査読あり
標題 Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy.
執筆形態 共著(筆頭者以外)
掲載誌名 Biomedical optics express
掲載区分国外
巻・号・頁 14(10),pp.5358-5375
国際共著 国際共著
著者・共著者 Mikie Nakabayashi, Siwei Liu, Nawara Mahmood Broti, Masashi Ichinose, Yumie Ono
概要 Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise.
DOI 10.1364/BOE.498693
ISSN 2156-7085
PMID 37854549