|
イチノセ マサシ
ICHINOSE Masashi
一之瀬 真志 所属 明治大学 経営学部 職種 専任教授 |
|
| 言語種別 | 英語 |
| 発行・発表の年月 | 2023/10 |
| 形態種別 | 学術雑誌 |
| 査読 | 査読あり |
| 標題 | Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy. |
| 執筆形態 | 共著(筆頭者以外) |
| 掲載誌名 | Biomedical optics express |
| 掲載区分 | 国外 |
| 巻・号・頁 | 14(10),pp.5358-5375 |
| 国際共著 | 国際共著 |
| 著者・共著者 | Mikie Nakabayashi, Siwei Liu, Nawara Mahmood Broti, Masashi Ichinose, Yumie Ono |
| 概要 | Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise. |
| DOI | 10.1364/BOE.498693 |
| ISSN | 2156-7085 |
| PMID | 37854549 |