クロダ ヨウジ
Kuroda Yoji
黒田 洋司 所属 明治大学 理工学部 職種 専任教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2011/12 |
形態種別 | 国際会議議事録 |
査読 | 査読あり |
標題 | Online Motion Model Parameter Estimation using Augmented Kalman Filter and Discriminative Training |
執筆形態 | 共著(筆頭者以外) |
掲載誌名 | Proc. of IEEE International Conference on Robotics and Biomimetics (ROBIO2011) |
掲載区分 | 国外 |
出版社・発行元 | IEEE |
巻・号・頁 | pp.1035-1040 |
著者・共著者 | Yuto Fujii and Yoji Kuroda |
概要 | In this paper, we propose an online motion model parameter estimation method. To achieve accurate localization, accurate estimation of motion model parameters is needed. However, the true values of motion model parameters change sequentially according to alteration of surrounding environments. Therefore the online estimation is absolutely imperative. As a typical method to estimate motion model parameters sequentially, Augmented Kalman Filter (AKF) is there. AKF achieve parameter estimation through Kalman filtering algorithm. However, AKF has serious problems to be implemented in real robot operation. These problems are the accuracy of observation and the limitation to motion control of robots. To solve these problems and achieve accurate motion model parameter estimation, proposed method introduces discriminative training. The introduction of discriminative training increases the convergence performance and stability of parameter estimation through AKF. The proposal method achieves accurate motion model parameter estimation in real robot operation. This paper describes the efficiency of our technique through simulations and an outdoor experiment. |
researchmap用URL | http://ieeexplore.ieee.org/document/6181424/ |